When is Offline Policy Selection Feasible for
Reinforcement Learning?

Vincent Liu Prabhat Nagarajan Andrew Patterson
University of Alberta University of Alberta University of Alberta
Edmonton, Canada Edmonton, Canada Edmonton, Canada
vliul@ualberta.ca pmnagara@ualberta.ca ap3@ualberta.ca
Martha White
University of Alberta

Edmonton, Canada
whitem@ualberta.ca

Abstract

Offline reinforcement learning algorithms often require careful hyperparameter tun-
ing. Consequently, before deployment, we need to select amongst a set of candidate
policies. As yet, however, there is little understanding about the fundamental limits
of this offline policy selection (OPS) problem. In this work we aim to provide
clarity on when sample efficient OPS is possible, primarily by connecting OPS
and off-policy policy evaluation (OPE). We first show a negative result, that in the
worst case, OPS is just as hard as OPE, by proving a reduction of OPE to OPS. We
show that a simple OPE method, importance sampling, achieves a nearly minimax
sample complexity. As a result, no OPS method can be more sample efficient than
OPE in the worst case. Then we propose a Bellman error estimation method for
OPS, and theoretically analyze when this method is sample efficient. We highlight
that using BE generally has more requirements, but if satisfied, has an easy method
for selecting its own hyperparameters and may be more sample efficient than OPE.
We conclude by showing the difficulty of OPS for an offline Atari benchmark, and
an empirical study comparing OPE and BE estimation.

1 Introduction

Offline reinforcement learning (RL)—Ilearning a policy from a dataset—is useful for many real-world
applications, as learning from online interaction may be expensive or dangerous [Levine et al., 2020].
There have been significant advances in offline RL algorithms that have demonstrated the ability
to learn purely from offline data. However, successfully use of these algorithms requires careful
hyperparameter selection. Moreover, one may want to select amongst different offline algorithms as
well, each with their own hyperparameters. Thus, we have a set of candidate policies to choose from
where each candidate policy is generated from a specific algorithm-hyperparameter configuration.

The problem of finding the best-performing policy from a set of candidate policies is known as policy
selection. Policy selection is a critical component in any practical offline RL system, since whether
or not we can select effective hyperparameters for offline RL algorithms has a significant impact on
the deployment performance [Wu et al., 2019, Gulcehre et al., 2020, Kumar et al., 2021]. With access
to the environment or the simulator, we can find the best-performing policy by performing Monte
Carlo rollouts for each candidate policy. However, in the offline setting, this Monte Carlo approach
cannot be performed, and mechanisms to select policies with offline data are needed.

Preprint. Under review.

A common approach to policy selection in the offline setting, known as offline policy selection (OPS),
is to perform off-policy policy evaluation (OPE) to estimate the values of candidate policies. Typical
OPE estimators include fitted Q evaluation (FQE) [Le et al., 2019] and importance sampling (IS)
[Sutton and Barto, 2018]. Tang and Wiens [2021], Paine et al. [2020] provide experimental results on
OPS using OPE. Doroudi et al. [2017], Yang et al. [2022] propose OPE estimators for OPS.

However, it is known that OPE is a hard problem that requires a large number of samples to evaluate
any given policy in the worst case [Wang et al., 2021], so OPE can be unreliable for OPS. As a result,
a natural follow-up question is: do the hardness results from OPE also hold for OPS? If the answer is
yes, then we would need to consider additional assumptions to enable sample efficient OPS.

Moreover, OPS should be easier than OPE intuitively, since estimating each policy accurately might
not be necessary for policy selection. There is mixed evidence that alternatives to OPE, which are
based on variants of Bellman errors, might be effective. Tang and Wiens [2021] empirically show
that selecting the candidate value function with the smallest TD errors perform poorly because TD
errors provide overestimates; they conclude OPE is necessary. On the other hand, Kumar et al.
[2021] propose using TD errors to select the number of training steps for an offline RL algorithm.
Some works provide theoretical results. Zhang and Jiang [2021] propose a value-function selection
algorithm called BVFT, which computes the (empirical) projected Bellman error for each pair of
candidate value functions. Lee et al. [2022b] provide a method for selecting the best function class
from a nested set of function classes for offline RL algorithm such as fitted Q iteration. However,
these theoretically-sound methods rely on data coverage assumptions. It remains an open question
about when, or even if, alternative approaches can outperform OPE for OPS.

In this work, we make contributions towards answering the question: when can we perform offline
policy selection efficiently—in other words with a polynomial sample complexity—for RL? We first
provide a clear connection between OPE and OPS, which has never been formally shown in the
literature. We show that the sample complexity of the OPS problem is lower-bounded by the samples
needed to perform OPE. As a consequence, OPS inherits the same hardness results as OPE. We
further show that an OPS algorithm that simply chooses the policy with the highest IS estimate
achieves a nearly minimax sample complexity, which is exponential in the horizon. This implies
no OPS approach can be more sample efficient than IS in the worst case, and we must consider
additional assumptions to circumvent exponential sample complexity.

Then we study alternative approaches to OPE, by using Bellman errors (BE) for OPS. Many OPE
methods such as FQE introduce extra hyperparameters, which are not easy to tune. We propose
a simple BE estimation algorithm with a simple way to select its own hyperparameters. We show
that BE can provide improve sample efficiency than OPE methods like FQE, but under stricter
requirements on data coverage and on the candidate set. We conclude with an empirical study, where
we systematically compare different OPS methods with varying sample sizes and show the inherent
difficulty of OPS in a bigger experiment in Atari. Notably, we show that all the OPS methods suffer
relatively high regret compared to using the tuned hyperparameters (obtained through cheating by
tuning for performance on the real environment), in some cases performing even worse than random
hyperparameter selection.

2 Background

In RL, the agent-environment interaction can be formalized as a finite horizon finite Markov decision
process (MDP) M = (S, A, H,v,Q). S is a set of states with size S = |S|, and A is a set of
actions with size A = |A|, H € Z* is the horizon, and v € A(S) is the initial state distribution
where A(S) is the set of probability distributions over S. Without loss of generality, we assume
that there is only one initial state so. The reward R and next state S’ are sampled from @, that is,
(R,S") ~ Q(|s, a). We assume the reward is bounded in [0, 7,,4,;] almost surely so the total return
of each episode is bounded in [0, V;,,4.] almost surely with V;,,q. = H7 4z The stochastic kernel @
induces a transition probability P : S x A — A(S), and a mean reward function (s, a) which gives
the mean reward when taking action a in state s.

A non-stationary policy is a sequence of memoryless policies (7o, ..., 7Tg—1) Where m, : S — A(A).
We assume that the set of states reachable at time step h, S, C S, are disjoint, without loss of
generality, because we can always define a new state space S’ = S x [H|, where [H| denotes the set
[H] :={0,1,...,H — 1}. Then, it is sufficient to consider stationary policies 7 : S — A(A).

Given a policy m, for any h € [H| and (s,a) € S x A, we define the value function and the action-

value function as vf (s) := E7| fzil r(St, A¢)|Sp=s] and ¢ (s,a) := E™ [Zi;l r(Se, Ap)|Sh =
s, Ap = al, respectively. The expectation is with respect to P™, which is the probability measure
on the random element (Sy, Ag, Ro, ..., Rg—1) induced by the policy 7. The Bellman evaluation

operator 7™ is defined as

(T™qn)(s,a) =7(s,a)+ Z P(s,a,s") Z m(a'|s")qn (s, a’),

s'eS a’eA

with the Bellman optimality operator (7 gp,)(s,a) obtained if a greedy policy in g, is used. We
use J(m) to denote the value of the policy 7, that is, the expected return from the initial state
J(m) = v{(s0). The optimal value function is defined by vj(s) := sup, v} (s). A policy = is
optimal if J(7) = v§(so).

In the offline setting, we are given a fixed set of transitions D with samples drawn from a data
distribution p. We consider the setting where the data is collected by a behavior policy 7, since the
data collection scheme is more practical [Xiao et al., 2022] and is used to collect data for benchmark
datasets [Fu et al., 2020]. We use dj; to denote the data distribution at the horizon h by following the
policy m, that is, dJ; (s, a) := P™ (S, = s, A, = a), and py(s,a) := P™(S), = s, A, = a).

3 Sample complexity of OPS

We consider the offline policy selection (OPS) problem and off-policy policy evaluation (OPE)
problem. We follow a similar notation and formulation used in Xiao et al. [2022] to formally describe
these problem settings. The OPS problem for a fixed number of episodes n is given by the tuple
(S, A, H,v,n,T). T is aset of instances of the form (M, dy, IT) where M € M(S, A, H, v) specifies
an MDP with state space S, action space A, horizon H and the initial state distributino v, dj, is a
distribution over a trajectory (So, Ao, Ro, . .., Rg—1) by running the behavior policy 7, on M, and
I1 is a finite set of candidate policies. We consider the setting where II has a small size and does not
depend on S, Aor H.

An OPS algorithm takes as input a batch of data D, which contains n trajectories, and a set of
candidate policies II, and outputs a policy 7 € II. We say an OPS algorithm L is (£, §)-sound on
instance (M, dy, IT) if

Prp~a, (Jar(L(D, 1)) > Jp(nf) —g) >1 -6

where 7! is the best policy in II. We say an OPS algorithm £ is (g, §)-sound on the problem
(S, A, H,v,n,T) if it is sound on any instance (M, dp, II) € Z.

Given a pair (e, §), the sample complexity of OPS is the smallest integer n such that there exists
a behavior policy 7, and an OPS algorithm £ such that £ is (g,0)-sound on the OPS problem
(S, A, H,v,n,Z(mp)) where Z(mp) denotes the set of instances with data distribution dj. That is, if
the sample complexity is lower-bounded by a number No pg, then, for any behavior policy m, there
exists an MDP M and a set of candidate policies IT such that any (g, §)-sound OPS algorithm on
(M, dp, IT) requires at least N pg episodes.

Similarly, the OPE problem for a fixed number of episodes n is given by (S, A, H,v,n,T). T is a set
of instances of the form (M, dp,) where M and dy, are defined as above, and 7 is a target policy.
An OPE algorithm takes as input a batch of data D and a target policy 7, and outputs an estimate of
the policy value. We say an OPE algorithm L is (&, d)-sound on instance (M, dy, 7) if

PI‘DNdb(LC(D,W) —Ju(m)| <e)>1-4.
We say an OPE algorithm L is (&, d)-sound on the problem (S, A, H,v,n,T) if it is sound on any
instance (M, dy, 7) € Z. Note that e should be less than V},,,,./2 otherwise the bound is trivial.

3.1 OPE as subroutine for OPS

It is obvious that a sound OPE algorithm can be used for OPS, so the sample complexity of OPS is
upper-bounded by the sample complexity of OPE up to a logarithmic factor. We state this formally in
the theorem below.

action = ay
reward =r _ P ~

OPS chooses 7 OPS chooses

r2 = (11 + Vinas)/2
action = ay

reward = 0

T —€ < J(@) <1+ €

(a) Constructing M and a candidate policy set (b) Searching for the true policy value

Figure 1: We can use an OPS algorithm for OPE. Given a MDP M and a target policy m, we can
construct a new MDP M’ and two candidate policies {71, 73} for OPS, as shown in (a). The MDP
construction was first mentioned in Wang et al. [2021]. 71 chooses a; in sg and is otherwise arbitrary,
o chooses as and is otherwise identical to the target policy 7. Figure (b) describes the search
procedure to find the policy value. We can keep searching for the true policy value by setting r for
the OPS query, until the desired precision is reached.

Theorem 1 (Upper bound on sample complexity of OPS). Given an MDP M, a data distribu-
tion dp, and a set of policies I, suppose that, for any pair (g,0), there exists an (g, d)-sound
OPE algorithm £ on any OPE instance I € {(M,dp,n) : m € II} with a sample size at most
O(Nopg(S, A, H,e,1/§)). Then there exists an (g, §)-sound OPS algorithm for the OPS problem
instance (M, dp, IT) which requires at most O(Nopg(S, A, H,£/2, |11|/0)) episodes.

In terms of the sample complexity, we have an extra /log (|II]) /n term for OPS due to the union
bound. For hyperparameter selection in practice, the size of the candidate set is often much smaller
than n, so this extra term is negligible. However, if the set is too large, complexity regularization
[Bartlett et al., 2002] may need to be considered. In this paper, we only consider a finite candidate set.

3.2 OPSis not easier than OPE

We have shown that OPS is sample efficient when OPE is sample efficient. However, it remains
unclear whether OPS can be sample efficient when OPE is not. In the following theorem, we lower
bound the sample complexity of OPS by the sample complexity of OPE. As a result, both OPS and
OPE suffer from the same hardness result, and we cannot expect OPS to be sample efficient under
conditions where OPE is not sample efficient.

Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any data distribution dj, and
any pair (g,9) with € € (0, Vina2/2) and 6 € (0, 1), there exists an MDP M and a policy 7 such
that any (e, 0)-sound OPE algorithm requires at least Q(Nopg(S, A, H,¢,1/5)) episodes. Then
there exists an MDP M’ with 8" = S + 2, H' = H + 1, and a set of candidate policies such that
for any pair (g,9) with € € (0, Vinas/3) and 6 € (0,1/m) where m := [log(Vinez/€)] > 1, any
(e, 6)-sound OPS algorithm also requires at least Q(Nopg(S, A, H,,1/(md))) episodes.

The proof sketch is to construct an OPE algorithm that queries OPS as a subroutine, as demonstrated
in Figure 1. As a result, the sample complexity of OPS is lower bounded by the sample complexity
of OPE. The proof can be found in Appendix A.

There exist several hardness results for OPE in tabular settings and with linear function approximation
[Yin and Wang, 2021, Wang et al., 2021]. Theorem 2 implies that the same hardness results hold for
OPS. We should not expect to have a sound OPS algorithm without additional assumptions. Theorem
2, however, does not imply that OPS and OPE are always equally hard. There are instances where
OPS is easy but OPE is not. For example, when all policies in the candidate set all have the same
value, any random policy selection is sound. However, OPE can still be difficult in such cases.

4 Minimax sample complexity for finite horizon finite MDPs

In this section, we prove a lower bound on the sample complexity of OPS for finite horizon finite
MDPs, and show that an OPE method (nearly) matches the lower bound.

Using the construction from Xiao et al. [2022], we have an exponential lower bound on the sample
complexity of OPE, which is presented in Theorem A.1 in the appendix for completeness. By the
lower bound for OPE and Theorem 2, we have a lower bound for OPS.

Corollary 1 (Exponential lower bound on the sample complexity of OPS). For any positive integers
S, A, H with S > 2H and a pair (&,6) with0 < ¢ < /1/8, 6 € (0,1), any (¢, d)-sound OPS
algorithm needs at least (A% ~1/c2) episodes.

We show that importance sampling (IS) achieves the lower bound. Recall the IS estimator [Rubinstein,
1981] is given by J(m) = L " TTH ' w(AY1S9) /my (A |SS) G, where Gy = Y27 RY
and n is the number of episodes in the dataset D.

Corollary 2 (OPS using IS achieves nearly minimax sample complexity). Suppose the data collection
policy is uniformly random, that is, 7 (a|s) = 1/A for all (s,a) € § X A, and |G;| < V4. almost
surely. Then the selection algorithm L that selects the policy with the highest IS estimate is (e, §)-
sound with O(A#V,,, .. In (]I /) /€?) episodes.

These results suggest that IS achieves a nearly minimax optimal sample complexity for OPS up to
a factor A and logarithmic factors. There are other improved variants of IS, including per-decision
IS and weighted IS [Precup et al., 2000, Sutton and Barto, 2018]. However, none of these variants
can help reduce sample complexity in the worst case because the lower bound in Corollary 1 holds
for any OPS algorithm. The result suggests that we need to consider additional assumptions on the
environment, the data distribution, or the candidate set to perform sample efficient OPS.

Note that Wang et al. [2017] have shown that IS estimator achieved the minimax mean squared error
for the OPE problem. Our result shows that IS also achieves a (nearly) minimax sample complexity
for the OPS problem, which is different from their work.

5 Bellman error selection for OPS

We show that OPE is the most sample-efficient method for OPS in the worse case. In this section, we
investigate whether and when BE can be useful for OPS.

Suppose we are given a set of candidate value functions Q := {q1,...,qx} and let II =
{m1,..., 7K} be the set of corresponding greedy policies, a common strategy is to select the action
value function with the smallest BE [Farahmand and Szepesviri, 2011]. We define this as (&, d)-sound
BE selection, that is, the goal is to select a function ¢ € Q such that £(g) < min;—; 0| E(q:) + €
with probability at least 1 — §, where we define £(¢;) := % >, ¢i,n — Tqi.n41ll3 ., to simplify
the notation, and |||y, == (3_ 5 0)esx.a #(5: @)la(s, a)|P)'/P. In this section, we show when BE
selection can be used for OPS and propose a practical BE selection method for OPS.

5.1 When is BE selection useful for OPS?

In order to relate BE selection to OPS, we need data coverage for both the candidate policies II
and an optimal policy. Data coverage is commonly measured by the concentration coefficient, first
introduced in Munos [2007].! We present an error decomposition for OPS using BE selection. Given
a candidate set Q, we define the suboptimality of the candidate set as €4, := mingeg £(q).

Corollary 3 (Error decomposition for OPS using BE selection). Assume there exists a constant C

such that, for any 7 € ITU {7*}, max), maxses, acA, Z;‘Ezzg < C, and we have an (g4, d)-sound

BE selection algorithm, which outputs ¢ € Q. Then, the OPS algorithm outputs the greedy policy
with respect to q is (2H y/C(sub + €est), 0)-sound.

Note that this bound on OPS can be very bad, this is because the term &g,; does not go to zero
even when we can collect more samples. Only €., goes to zero as n goes to infinity, which will be
discussed in the next subsection.

To see how poor the guarantee can be, suppose we have two action values ¢; = 100¢™ and ¢o =
q* + some random noise, then ¢; has a large Bellman error but 7; is actually optimal. We would

IThere are other measures of data coverage with function approximation [Xie et al., 2021]. However, we
focus on the concentration coefficient to clearly compare assumptions between different methods.

choose ¢ since it has a lower Bellman error, even when we can collect an infinite number of samples.
To obtain a meaningful guarantee, we need to include another value function, for example, g3 = ¢*
to make €4, = 0. As we collect more samples, we can estimate the Bellman error more accurately
and eventually choose ¢s.

At the same time, as we get more offline data, then we might actually change our candidate set. If
we have more samples for training offline algorithms and generating the candidate set, it is more
likely that there is one action value function in the candidate set that is close to optimal. That is, for a
fixed candidate set, €4, does not get smaller as we collect more samples for OPS, but if we use those
offline samples to train the candidates policies, then €,,,;, might get smaller.

5.2 A sample-efficient and hyperparameter-free BE selection method

In deterministic environments, the BE can be easily estimated using TD errors. Given a state-action
value ¢ with v4(s) := max, ¢(s,a) the corresponding state value, the BE estimate is TDE(q) :=

IT%I > (s.a.sr.myen (d(s,a) —r —vy(s"))?. Using standard concentration inequality, we can show that
using TD error for BE selection requires a sample size n = O(H* log (|II|H/§)/e2,,).

In stochastic environments, estimating BE typically involves an additional regression problem [Antos
et al., 2008]. Antos et al. [2008] propose to estimate the BE by introducing an auxiliary function g:

£(q) = TDE(q) — miél ﬁ Z (g(s,a) — 1 —v,(s"))? (1)

ge
(s,a,s’,r)ED

The sample complexity of estimating the BE depends on the complexity of the function class G, as
shown in the theorem below.

Theorem 3. Suppose all ¢ € Q and g € G take value in [0, V},4.]. Let ¢' be the action value

function with the smallest estimated Bellman error & (¢). Then with probability at least 1 — d, for
some constant ¢y (ignoring approximation and optimization error),

E(gh < . min| lE)+ coVi2 o/ 10g(2ITI H /) /1 + coVinaz R (G)

where R¥(G) is the Rademacher complexity of the function class G.

Assume G has finite elements (for simplicity only), the sample complexity of finding a good action
value function is O(H* log (|G||I1|H/6)/£2,,). The proof can be found in Appendix A.

Compared to deterministic environments, we have an additional term that depends on the size of the
function class. Fortunately, we can perform model selection to choose the function approximation
G. This is because we are running regression with fixed targets in Eq (1), and model selection for
regression is well-studied. For example, we can use a holdout validation set to select the function class
and hyperparameters. Therefore, we can choose a function class such that it has a low approximation
error and a small complexity measure, which can potentially result in improved sample efficiency.

Moreover, we can also use the auxiliary function to predict 7¢ — g, instead of 7 ¢ [Dai et al., 2018,
Patterson et al., 2022]. The benefit is that the Bellman errors are more likely to be predictable. Under
the conditions for Corollary 3, if there is an action-value function ¢ € Q with a small BE, the Bellman
errors are nearly zero everywhere and any reasonable function class are able to learn it. We describe
the practical BE selection with holdout validation in Algorithm 1.

As far we know, no prior work has studied this BE selection method for OPS. Some works consider
selecting a value function that has the smallest BE or is the closest to the optimal value function.
Farahmand and Szepesvari [2011] consider selecting a value function such that with high probability,
the output value functions has the smallest BE. They propose to fit a regression model g; to predict
T ¢; and bound the BE by [lg; — Gi||3,,, + b; where the first term can be viewed as the (empirical)
projected Bellman error, and the second term b; is a high-probability upper bound on the excess risk
of the regression model, which is assumed to be given.

Zhang and Jiang [2021] propose the (empirical) projected Bellman error with piecewise constant
function classes. Their selection algorithm chooses the value function with the smallest BVFT
loss, assuming ¢* is in the candidate set (approximately) and a stronger data assumption is satisfied.
Interestingly, this condition on having ¢* is similar to our condition requiring small £, since

Algorithm 1 BE selection with holdout validation

Input: Candidate set Q, training data D, validation data D, a set of function classes Gy, ..., G
for g € Q do
Let §(s,a,r,s") =1+ v4(s") — q(s,a)
form=1,...,M do
Perform regression: §,, - mingeg,, ﬁ > p(g(s,a) — (s, a,r,s"))?
Compute validation error: {(§,,) + m Yop.. (Gm(s,a) = (s, a,7,5))?

Find the best function class: k < argmin,,=1 . 1(gm)

Estimate the Bellman error for ¢: BE(q) + ﬁ > b 20k (s,a)d(s,a,m, ") — Gi(s, a)?

Output: ¢' «+ arg min,e o BE(q)

q* has exactly zero BE. The algorithms, though, are quite different from our work. Their method
is computationally expensive since it scales with O(|IT|?) instead of O(|II|), making the method
impractical when the candidate set is large.

Compare to Jiang and Li [2016], our method does not require the stronger data coverage assumption
and the computation cost scales with O(|II]). Compared to Farahmand and Szepesvari [2011], our
method does not assume the access to a high-probability upper bound on the excess risk.

6 Should we use BE selection or OPE?

We can leverage Theorem 1 to inherit the sample complexity result from OPE to OPS. There is
a wealth of literature on OPE. However, estimators that use IS have exponentially high variance,
which result in exponential sample complexity. There are more complex estimators such as the
MAGIC estimator [Thomas and Brunskill, 2016] and the clipped IS estimator [Bottou et al., 2013],
however, they are sensitive to their hyperparameters and it is hard to pick the hyperparameters offline.
Model-based methods [Mannor et al., 2007, Liu et al., 2018] require learning a model, which makes
it impractical in large state and action spaces. Some OPE methods are designed for specific MDPs
such as Exogenous MDPs [Liu et al., 2023]. Finally, FQE and DICE methods have been shown to be
effective for OPS [Paine et al., 2020, Yang et al., 2022]. We provide a short summary of the known
OPE results in the appendix.

FQE and DICE methods require a standard data coverage assumption. That is, we need data coverage
for all the candidate policies. For FQE, we also need a function class F which is closed under 7™ for
all 7 € II. Assume F has finite elements (for simplicity only), the result from Duan et al. [2021] can
be extended to show that the sample complexity of using FQE for OPS is O(H* log (|F||I1|H/6)/<?).
There are corresponding results for the DICE methods [Nachum et al., 2019, Uehara et al., 2020]. If
we use the same function approximation, the sample complexity of FQE has a similar order as BE.
However, model selection for FQE is still an open problem.

In summary, OPE is a more general method for OPS. OPS using BE selection requires a stronger
data coverage assumption since it needs coverage not only for the candidates policies, but also 7*.
Moreover, the guarantee for OPS using BE selection can be poor due to the additional term &£,
which does not decrease as we collect more samples for OPS. We need at least one of the action
value functions to be close to the optimal value. For OPE, we can perform OPS even if none of the
candidate policies are close to optimal.

On the other hand, if we satisfy this stronger data coverage condition and have small €,,,;, then BE
selection has several advantages. BE selection can be much more sample efficient in deterministic
environments, or even in stochastic environments by choosing an appropriate function approximation.
More importantly, for BE, we are not plagued by the issue of having hard-to-specify hyperparameters.
This is critical for the offline setting, where we cannot test different hyperparameter choices in the
environment.

Table 1: Normalized top-1 regret. The numbers are averaged over 5 datasets.

Method Breakout-early Breakout-medium Seaquest-early Seaquest-final
FQE 0.2874 £ 0.1847 0.3763 = 0.3548 0.8819+0.1436 0.5714 £ 0.3370
BE 0.4420 £0.1083 0.6917 +£0.2311 0.7573 £0.2178 0.4851 £+ 0.2721

BVFT 0.4071£0.1368 0.6917+£0.2311 0.7573 £0.2178 0.5202 £ 0.1847
random 0.3748 £0.0766 0.4916 £ 0.0806 0.6604 = 0.0752 0.5324 £ 0.0724

7 Experimental results

In this section, we provide experimental results to support our theoretical findings. We first show the
difficulty of OPS for a standard offline Atari dataset. We then more systematically investigate the
differences between several OPS methods, in a more controlled setting. All hyperparameters for OPS
methods are selected using only the datasets, not by peaking at performance on the real environment;
for more details, see Appendix C.

To evaluate the performance of OPS, we consider the normalized top-k regret used in Zhang and
Jiang [2021]. Top-k regret is the gap between the best policy within the top-£ policies, and the best
policy among all candidate policies. We then normalized the regret by the difference between the
best and the worst policy, so the normalized regret is between 0 and 1. OPS corresponds to k = 1;
for most results we use k£ = 1, but include some results for k£ > 1 in the appendix.

7.1 The hardness of OPS for benchmark datasets

We first conduct experiments on Atari datasets to show the hardness of OPS for offline RL. We use 1
million transitions on Breakout and Seaquest from the DQN replay dataset’> and choose transitions
from early learning (first 1 million steps), medium learning (between 19 to 20 millions steps) and
final learning (between 49 to 50 millions steps). Note that the data coverage might be poor due to the
absent of explicit exploration to cover all candidate policies. We use 50% of the data to generate a set
of candidate policy-value pairs by running CQL with different number of gradient steps and different
value of regularization, as specified in Kumar et al. [2020]. We use the other 50% data to perform
OPS using FQE or BE. We also included BVFT [Zhang and Jiang, 2021], and a random selection
baseline where we randomly choose a policy from the candidate set.

Table 1 shows the top-1 regret. The results for top-2 and top-3 regret can be found in Appendix B.
We can see that these OPS methods suffer high regret and are often comparable to or worse than the
random baseline. For Breakout, we found that BE tends to pick the candidate value function with a
small number of gradient steps. This is likely due to that none of the candidate value functions are
close to optimal (large £,,5) and the value function with a small number of training steps has a small
magnitude and hence a small BE. FQE is more reliable in general, but it still suffers high regret in
Seaquest where we do not have good data coverage for the candidate policies.

7.2 Empirical comparison of OPE and BE selection

In the second set of experiments, we aim to answer the following questions: (1) How do OPE and
BE selection perform for OPS under different data distribution (2) Can BE selection be more sample
efficient than OPE for OPS? Again we focus on a particular OPE method, FQE.

We design three different datasets: (a) well-covered data is generated such that all candidate policies
are well-covered, (b) diverse data includes more diverse trajectories collected by an e-greedy expert
policy, and (c) train data is collected by the behavior policy that is used to collect the training data
to generate the candidate set. We conduct experiments on two standard RL environments: Acrobot
and Cartpole. We also include the stochastic versions of these environments with sticky actions
[Machado et al., 2018], which we call Stochastic Acrobot and Stochastic Cartpole. We generate a set
of candidate policy-value pairs by running CQL with different hyperparameters on a batch of data
collected by an optimal policy with random actions taken 40% of the time. We then use either FQE,
TDE, BE or BVFT for OPS. We do not include IS since the IS estimates are mostly zero.

https://research.google/resources/datasets/dqn-replay/

https://research.google/resources/datasets/dqn-replay/

Acrobot Stochastic Acrobot
Well-covered Diverse Train Well-covered Diverse Train

1.00) — FQE R N —— FQE
0.8 0.75 0.8 TDE 06 / 0815 0.75] "\ TDE
0.6 A\ % _ /\ 0.6] \

0.4] 4\ 0.50{ 06/~ / — BE 0.4/ 04 _k\ 0.50 N —— BE
02|’ \7— 025 N RN\ BVFdT 02\ 02\ 0.25 \\ BVFdT
- ——Y ranaom o e— — — . 0.00 — random

045102 102 %0%5T 107 10* 10T 107 10° %510z 100 *4eT 107 160 O 107 10°

n n n n n n

Cartpole Stochastic Cartpole

1.00 Well-covered Diverse 08 Train FQE Well-covered Diverse Train FQE
. : * 0.6 0.6 —
0.75 08 0.6 TDE 0.4 ol N TDE
0.50 . 04 QL 0.4 R W BE o2 A 4N\ 0.4{ \ — BE
0.25 \:x,, j 0.2 XN \\ 0.2 \ BVFT : o S — 02l 02| i BVFT
0.0 = g - random - - random
! 0101 1027 10° 0101 102" 710° 10T 02103 1071027 10° 10! 107 10° 10T 107 103

n n n n n n

Figure 2: Normalized top-1 regret with varying sample size. The results are averaged over 10 runs
with one standard error.

Figure 2 shows the results for top-1 regret with varying numbers of episodes. We first focus on the
asymptotic performance (n = 10%). FQE performs very well with a small regret on well-covered and
diverse data. TDE and BE perform better with diverse data, compared to well-covered data. BVFT
performs similarly as TDE, which is likely due to the fact that BVFT with small discretization is
equivalent to TDE. For train data, these methods perform well in some environments even though
there is not theoretical guarantee. We hypothesize the reason might be that we use a conservative
algorithm to generate candidate policies so these candidate policies are covered to the train data.

Next we focus on the sample efficiency on the diverse data since FQE, BE and TDE should all work
well with such data. TDE and BE perform better than FQE with a small sample size (< 100 episodes)
in most cases. Theoretically, FQE and BE have the same magnitude of sample complexity, which
depends on the complexity of the function class. In practice, we perform model selection for BE,
so, for problems where a small function class is sufficient, we can use a small function class and
obtain better sample efficiency. This might explain the observation that BE is more sample efficient
than FQE in some of the environments. Additionally, we show that the model selection procedure is
important for BE, by comparing to BE with a fixed hidden size, in Figure 4 in Appendix B.

8 Related work

In this section we provide a more comprehensive survey of prior work on model selection for RL.
In the online setting, model selection has been studied extensively across contextual bandits [Foster
et al., 2019] to RL [Lee et al., 2021]. In the online setting, the goal is to select model classes while
balancing exploration and exploitation to achieve low regret, which is very different from the offline
setting where no exploration is performed.

In the offline setting, besides using OPE and BE selection, other work on model selection in RL
is in other settings: selecting models and selecting amongst OPE estimators. Hallak et al. [2013]
consider model selection for model-based RL algorithms with batch data. They focus on selecting the
most suitable model that generates the observed data, based on the maximum likelihood framework.
Su et al. [2020] consider estimator selection for OPE when the estimators can be ordered with
monotonically increasing biases and decreasing confidence intervals.

In offline RL pipelines, we often split the offline data into training data for generating multiple
candidate policies and validation data for selecting the best candidate policy. Nie et al. [2022]
highlight the utility of performing multiple random data splits for OPS. They do not study the
hardness or sample complexity of this procedure.

To the best of our knowledge, there is no previous work on understanding the fundamental limits for
OPS in RL. There is one related work in the batch contextual bandit setting, studying the selection
of a linear model [Lee et al., 2022a]. They provide a hardness result suggesting it is impossible to
achieve an oracle inequality that balances the approximation error, the complexity of the function
class, and data coverage. Our work considers the more general problem, selecting a policy from a set
of policies, in the RL setting.

9 Conclusion

In this paper, we made contributions towards understanding when OPS is feasible for RL. One of
our main results—that the sample complexity of OPS is lower-bounded by the sample complexity of
OPE—is perhaps expected. However, to our knowledge, this has never been formally shown. This
result implies that without conditions to make OPE feasible, we cannot do policy selection efficiently.

We expect an active research topic will be to identify suitable conditions on the policies, environments
and data, to make OPS feasible, or to design offline RL algorithms that have sound methods to
select their own hyperparameters. In offline RL, we cannot select hyperparameters by testing in the
real-world, and instead are limited to using the offline data. OPS is arguably one of the most critical
steps towards bringing RL into the real-world, and there is much more to understand.

References

Andras Antos, Csaba Szepesvari, and Rémi Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
2008.

Peter L Bartlett, Stéphane Boucheron, and Gabor Lugosi. Model selection and error estimation.
Machine Learning, 2002.

Léon Bottou, Jonas Peters, Joaquin Quifionero-Candela, Denis X Charles, D Max Chickering, Elon
Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning Research, 14
(11), 2013.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. SBEED:
Convergent reinforcement learning with nonlinear function approximation. In International
Conference on Machine Learning, 2018.

Shayan Doroudi, Philip S Thomas, and Emma Brunskill. Importance sampling for fair policy
selection. In Conference on Uncertainty in Artificial Intelligence, 2017.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and Rademacher complexity in batch reinforcement
learning. In International Conference on Machine Learning, 2021.

Amir-massoud Farahmand and Csaba Szepesvari. Model selection in reinforcement learning. Machine
Learning, 2011.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits.
Advances in Neural Information Processing Systems, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel] Mankowitz, Cosmin Paduraru, et al. RL unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 2020.

Assaf Hallak, Dotan Di-Castro, and Shie Mannor. Model selection in markovian processes. In
International Conference on Knowledge Discovery and Data Mining, 2013.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, 2016.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with rich
observations. Advances in Neural Information Processing Systems, 2016.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 2020.

10

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. In Conference on Robot Learning, 2021.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning, 2019.

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online
model selection for reinforcement learning with function approximation. In International Confer-
ence on Artificial Intelligence and Statistics, 2021.

Jonathan Lee, George Tucker, Ofir Nachum, and Bo Dai. Model selection in batch policy optimization.
In International Conference on Machine Learning, 2022a.

Jonathan N Lee, George Tucker, Ofir Nachum, Bo Dai, and Emma Brunskill. Oracle inequalities
for model selection in offline reinforcement learning. Advances in Neural Information Processing
Systems, 2022b.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Vincent Liu, James R Wright, and Martha White. Exploiting action impact regularity and exogenous
state variables for offline reinforcement learning. Journal of Artificial Intelligence Research, 77:
71-101, 2023.

Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A Faisal, Finale Doshi-
Velez, and Emma Brunskill. Representation balancing MDPs for off-policy policy evaluation.
Advances in Neural Information Processing Systems, 2018.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 61:523-562, 2018.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation in
value function estimates. Management Science, 2007.

Rémi Munos. Performance bounds in I,-norm for approximate value iteration. SIAM journal on
control and optimization, 46(2):541-561, 2007.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. DualDICE: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in Neural Information Processing Systems,
2019.

Allen Nie, Yannis Flet-Berliac, Deon R Jordan, William Steenbergen, and Emma Brunskill. Data-
efficient pipeline for offline reinforcement learning with limited data. Advances in Neural Informa-
tion Processing Systems, 2022.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Andrew Patterson, Adam White, and Martha White. A generalized projected Bellman error for
off-policy value estimation in reinforcement learning. Journal of Machine Learning Research,
2022.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for off-policy policy
evaluation. In International Conference on Machine Learning, 2000.

Reuven Y Rubinstein. Simulation and the Monte Carlo method. John Wiley & Sons, 1981.

Yi Su, Pavithra Srinath, and Akshay Krishnamurthy. Adaptive estimator selection for off-policy
evaluation. In International Conference on Machine Learning, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

11

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical
considerations for healthcare settings. In Machine Learning for Healthcare Conference, 2021.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, 2016.

Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax weight and g-function learning for
off-policy evaluation. In International Conference on Machine Learning, 2020.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline RL
with linear function approximation? In International Conference on Learning Representations,
2021.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. Optimal and adaptive off-policy evaluation in
contextual bandits. In International Conference on Machine Learning, 2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. The curse of passive data
collection in batch reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, 2022.

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A
theoretical comparison. In Conference on Uncertainty in Artificial Intelligence, 2020.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in Neural Information Processing Systems,
2021.

Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, and Dale Schuurmans. Offline policy selection
under uncertainty. In International Conference on Artificial Intelligence and Statistics, 2022.

Ming Yin and Yu-Xiang Wang. Optimal uniform OPE and model-based offline reinforcement learning
in time-homogeneous, reward-free and task-agnostic settings. Advances in Neural Information
Processing Systems, 2021.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. Advances in Neural Information Processing Systems, 2021.

12

A Technical details

A.1 Proof of Theorem 1

Theorem 1 (Upper bound on sample complexity of OPS). Given an MDP M, a data distribu-
tion dp, and a set of policies II, suppose that, for any pair (g,0), there exists an (g, d)-sound
OPE algorithm £ on any OPE instance I € {(M,dp,7) : = € II} with a sample size at most
O(Nopr(S,A,H,c,1/§)). Then there exists an (&, §)-sound OPS algorithm for the OPS problem
instance (M, dp, IT) which requires at most O(Nopg(S, A, H,e/2, |I1|/6)) episodes.

Proof. The OPS algorithm £(D, IT) for a given (¢, d) works as follows: we query an (¢', §’)-sound
OPE algorithm for each policy in II and select the policy with the highest estimated value. That is,

L(D,TI) outputs the policy 7 := arg max, .1y J(m), where .J () is the value estimate for policy 7
by the (&’,§")-sound OPE algorithm with data D.

By definition of an (&', §’)-sound OPE algorithm we have
Prpeq,(|J(m) = J(m)| <€) > 1 -8 ,vr €L
Applying the union bound, we have

Prpeq,(Vr € IL | J(7) — J(m)| < &') > 1 — §'[T0].

Let 7' denote the best policy in the candidate set IT, that is, 7' := arg max,.cyp J (7). With probability
1 — §’|II|, we have

J@) > J#@)—€ > Jxt) —¢ > J(nt) —2¢.
The second inequality follows from the definition of 7.
Finally, by setting 6’ = 6/|II| and ¢’ = £/2, we get
Prpea,(J(7) > J(xT) —e) > 1 -4,

That is, £ is an (g, §)-sound OPS algorithm. This requires at most O(Nopg(S, A, H,/2, |11]/0))
samples. O

A.2 Proof of Theorem 2

Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any data distribution dj, and
any pair (g,0) with € € (0, Vinaz/2) and 6 € (0, 1), there exists an MDP M and a policy 7 such
that any (e, 0)-sound OPE algorithm requires at least Q(Nopg(S, A, H,¢,1/0)) episodes. Then
there exists an MDP M’ with S = S + 2, H' = H + 1, and a set of candidate policies such that
for any pair (g,9) with € € (0, Vinae/3) and 6 € (0,1/m) where m := [log(Vinez/€)] > 1, any
(e, 6)-sound OPS algorithm also requires at least Q(Nopg(S, A, H,,1/(md))) episodes.

Proof. Our goal is to construct an (&, §)-sound OPE algorithm with § € (0,1) and € € [0, Vinaz/2].
To evaluate any policy 7 in M with dataset D sampled from dj, we first construct a new MDP M,
with two additional states: an initial state sg and a terminal state s;. Taking a at s transitions to s;
with reward r. Taking as at s transitions to the initial state in the original MDP M. See Figure 1 in
the main paper for visualization.

Let IT = {m, 2} be the candidate set in M,. where 7 (sg) = a; and ma(sg) = ag and 7o (a|s) =
m(als) forall (s,a) € S x A. Since 7; always transitions to s1, it never transitions to states in MDP
M. Therefore, 71 can be arbitrary for all (s,a) € S x A. We can add any number of transitions
(so,a1,7,s)and (sg, az,0, s) in D to construct the dataset D, with distribution dj, ,- arbitrarily.

Suppose we have an (&', ¢')-sound OPS algorithm, where we set &’ = 2¢/3, §' = §/m and m :=
[log(Vinaz/€’)]. Note that if this assumption does not hold, then it directly implies that the sample
complexity of OPS is larger than Q(Nopg(S, A, H,e,1/6)). Our strategy will be to iteratively set
the reward r of MDP M,. and run our sound OPS algorithm on II and using bisection search to
estimate a precise interval for J ().

13

Figure 3: Lower bound construction.

The process is as follows. By construction, our OPS algorithm will output either 71, which has value
Jar, (1) = r, or output 72, which has value Jyy, (72) = Jps (7). That is, it has the same value as 7
in the original MDP. Let us consider the following two cases. Let 7' be the best policy in IT for MDP
M,.

Case 1: the OPS algorithm selects ;. We know, by definition of a sound OPS algorithm, that

PI“(JM7,(7T1) 2 JMT(TFT) — 5/) Z 1— (5/
= Pr(r > max(r, Jy, (7)) — ') > 10
= Pr(Jy, (me) <r+¢)>1-4".

Case 2: the OPS algorithm selects 7.

Pr(JA[T(ﬂ—Q) 2 JMT(’]TT) - El) Z 1-— (5/
= Pr(Jp, (m2) > max(r, Jas, (m2)) — ') > 1§
= Pr(Jy, (me) >r—€)>1-4".
Given this information, we describe the iterative process by which we produce the estimate J (). We
firstset U = Vyae, L=0and r = % and run the sound OPS algorithm with input D, of sample
size n,- and the candidate set II. Then if the selected policy is 71, then we conclude the desired event
J(m) < r+ ¢’ occurs with probability at least 1 — §’, and set U equal to r. If the selected policy is
79, then we know the desired event J(7) > r — &’ occurs with probability at least 1 — ¢’, and set L
equal to . We can continue the bisection search until the accuracy is less than &', thatis, U — L < &/,
and the output value estimate is J(m) = YEE.

If all desired events at each call occur, then we conclude that L — ¢’ < J(7) < U + ¢’ and thus
|J(m) — J(7)| < e. The total number of OPS calls is at most m. Setting ' = §/m and applying a
union bound, we can conclude that with probability at least 1 — §, |J(7w) — J(7)| < e.

Finally, since any (e,d)-sound OPE algorithm on the instance (M,dp,m) needs at
least Q(Nopg(S, A, H,e,1/5)) samples, the (¢/,d’)-sound OPS algorithm needs at least
Q(Nopr(S, A, H,e,1/6)), orequivalently Q(Nopr(S, A, H,3¢'/2,1/(md"))) samples for at least
one of the instances (M., dp -, IT). O

A.3 Proof of Corollary 2

Theorem A.1 (Exponential lower bound on the sample complexity of OPE). For any positive integers
S, A, H with S > 2H and a pair (¢,d) with 0 < ¢ < /1/8,§ € (0,1), any (¢, d)-sound OPE
algorithm needs at least Q(A In (1/5)/£2) episodes.

Proof. We provide a proof which uses the construction from Xiao et al. [2022]. They provide the
result for the offline RL problem with Gaussian rewards. Here we provide the result for OPE problem
with Bernoulli rewards since we assume rewards are bounded to match Theorem 2.

We can construct an MDP with S states, A actions and 2H states. See Figure 3 for the construction.
Given any behavior policy , let a;, = argmin, m(a|sy) be the action that leads to the next
state sp41 from state sp, and all other actions lead to an absorbing state s7. Once we reach an
absorbing state, the agent gets zero reward for all actions for the remainder of the episode. The only
nonzero reward is in the last state szy_;. Consider a target policy that chooses aj, for state sy, for all
h=0,...,H — 1, and two MDPs where the only difference between them is the reward distribution

14

in sy_1. MDP 1 has Bernoulli distribution with mean 1/2 and MDP 2 has Bernoulli distribution
with mean 1/2 — 2¢. Let IP; denote the probability measure with respect to MDP 1 and P denote
the probability measure with respect to MDP 2.

Let 7 denote the OPE estimate by an algorithm £. Define an event £ = {7 < % —¢}. Then £
is not (e, d)-sound if (P1(E) + P2(E°))/2 > §. This is because L is not (g, d)-sound if either
Pi(fF<3—g)>dorPy(f >4 —¢) >0

Using the Bretagnolle—Huber inequality (see Theorem 14.2 of Lattimore and Szepesvari [2020]), we
know

P (E) + Py (£° 1

% > 1 oD (=D (P, Py)).
By the chain rule for KL-divergence and the fact that P; and P, only differ in the reward for
($sH—1,am—_1), we have

" ; ; 1 1/2 1 1/2
DraPuP) =B |5 HSHL = vrers Ay =an) (s (570 + 38 (17572

i=1

|

i i 1
]P’l(Sél)_l = 5H—17Ag{)_1 = aH—l) (—2 log (1 — 462))

The last inequality follows from — log (1 — 4¢?) < 8¢? if 4¢? < 1/2 [Krishnamurthy et al., 2016]
and IP’l(Sl(L})_l =SHg_1, A%)_l =ag_1) < 1/AH from the construction of the MDPs.
Finally,
Py (E)+Py(E) _ 1 . (771862)
2 — 4 AH
which is larger than & if n < A In(1/46)/8¢2. As a result, we need at least Q(A In (1/6)/£?)
episodes. O

Corollary 2 (OPS using IS achieves nearly minimax sample complexity). Suppose the data collection
policy is uniformly random, that is, 7 (a|s) = 1/A for all (s,a) € S X A, and |G;| < V4. almost
surely. Then the selection algorithm L that selects the policy with the highest IS estimate is (e, §)-
sound with O(A# V.. In (]I /) /€?) episodes.

Proof. Since the policy is uniform random, we know |W;G;| < ARV, almost surely. Moreover,

the importance sampling estimator is unbiased, that is, E[W;G;] = J(m). Using the Bernstein’s
inequality, we can show that the IS estimator satisfies

pr<ﬂmoﬂmﬂSQN”%“m@M)*Vﬂm@m@nmy&>zl5

3n n
for one candidate policy 7x. Using the union bound over all candidate policies, we have

7 2AH mawl 2|11 2 Gy In (2|11

H(ﬂm%Jmﬂg Y M|V®+¢VMG>M|V®
3n

That is,

. <J(£(D7H)) > I AAHV,, .. In (2[T1]/6) +\/8V(WiGi)ln(2|H|/6)) S

n

,Vk‘) >1-46.

3n n

For the variance term,

V(W;G;) = EW2G?) — E[W,Gi)* < E[W2G?] < \/EWZE[G?] < A"V, 40

The second inequality follows from the Cauchy-Schwarz inequality. Therefore, if n >
32A8V,, .. In (2|T1|/6) /€2, L is (&, 6)-sound. O

15

A4 Proof of Corollary 3

Lemma A.2 (Theorem 2 of Xie and Jiang [2020] for discounting setting and Lemma 3.2 of Duan et al.

[2021] for finite horizon setting). Assume there exists a constant C' such that, for any 7 € ITU {7*},

maxy, MaXses), ac.A, Z;ﬁ’ Z) C. For any ¢ € Q, let 7 denotes the greedy policy with respect to

q_(QO7"'7qH 1) then

H-1
. 1
J(ﬂ') > J(Tl') — QH\/E H hZ:O HQh - TQh+1||27Mh .

Corollary 3 (Error decomposition for OPS using BE selection). Assume there exists a constant C

such that, for any 7 € ITU {7*}, max), maxses, acA, Z}hi Z% < C, and we have an (e, 6)-sound

BE selection algorithm, which outputs ¢ € Q. Then, the OPS algorithm outputs the greedy policy

with respect to ¢ is (2H \/C(sub + €est), 0)-sound.

Proof. Since E(qr) = & Yp llakn — qu7h+1||i < Egub + Eest With probability at least 1 — 6,
Lemma A.2 implies

J(mg) = J(7*) — 2HA/C(Esup + Eest) = J(?TT) —2H\/C(egup + €est)

where 7' is the best performing policy in II. By the definition, the OPS algorithm is

(2H+\/C(esup + €est), 0)-sound for this instance. O

A.5 Proof of Theorem 3

Lemma A.3 (Bellman error selection in deterministic environments). Consider a deterministic
environment, let £ be the index with the lowest empirical TD error error, that is,

k= argmln—z Z

""" |Q‘ (sars)EDh

2

)

@in(s,a) — 1 — max Ginr1(s',a)
then the following holds with probability at least 1 — § and some constant cq

E(gr) € min_ E(q) + coVitan W.

i=1,...,] Q| n
Proof. Using Hoeftding’s inequality and the union bound, with probability at least 1 — §, we have

1 log (2H 11| /)

~) la(sa) v —maxania (s’ a) = llan = Tansa 3, | < coVias -
(s,a,r,s’)EDy,
for all candidate value function ¢ = (¢1,...,qg—1) € Q and h € [H| for some constant ¢y > 0.
Then
. log (|IT|H /6
Elgr) £ min _ E(q;) + coVi2 s M
i=1,...,|] Q| n

for some constant ¢y > 0. O]

Assumption A.4 (Approximation error). For any h € [H] and any candidate function f € Q (here
we use f instead of g to avoid confusion between ¢ and g), we assume the approximation error is
bounded by €4, that is,

: 2
glrelg lg =T fl5,u, < €apa-

16

Definition A.5 (Rademacher complexity). Given a function class F, let X = {1, ..., 2, } denotes
n fixed data points at horizon h following the distribution g, the empirical Rademacher complexity
is defined as

Rx(F)=E |sup =) o;f(z)|X

sup Z if (x;
where the expectation is with respect to the Rademacher random variables ;. The Rademacher
complexity is defined as Ri» (F) = E[Rx (F)] where the expectation is with respect to the n data
points. Finally, to simply the notation, we define R/;(F) = maxy¢(z) Ri"(F) as the maximum
Rademacher complexity over all horizons.

Definition A.6. Given an action value function f, define the state value function v¢(s) =
argmaxqe 4 f($,a), and four loss functions:

Los(g. /)=~ S (gls.a) —r—uy(s)
(s,a,r,s")EDy,
=T Y (elsa) ()
h (s,a,r,s’)EDp
Hh (9 f) E sa,rs)~pn ((S,G) _T_vf(sl))Q]

= S Bnnllgs,0) = 7 = g ()7,
h

Theorem 3 (Bellman error selection in stochastic environments). Suppose all f € Q and g € G take
value in [0, Vinas). Let k = argmin, Lp(fi, fi) — Lp(gs, fi) where §; = argmingeg Lp(g, fi).
Then the following holds with probability at least 1 — 4,

2log(2|IT|H/§
E(gr) < 'ﬂmin‘g‘ E(q:) + cofapz + coVinazRE(G) + coVi2 o M

for some constant c¢g > 0.

Proof. Fix a horizon h and a target function f. By concentration with Rademacher complexity (e.g.,
Lemma G.1 of Duan et al. [2021]), with probability at least 1 — 6 /2, we know, for any g € G,

LD, (9, F) = Ly (9. f)] < 2RE*(Lp,, 0 G) + Ve %'

We note that the loss function Lp, is (2V;,q,)-Lipschitz in its first argument, that is,

ILp, (9, f)(s,a,m,8") = Lp, (¢, (5,07, 8")| = [(g(s,a) =7 = Vi (s)? = (' (s,a) = = Vi(s"))?|
=[(g(s,a) = g'(s,a))(g(s,a) + g'(s,a) — 2r — 2Vy(s"))|
< |g($, a) - g/(s, a‘)”g(sa Cl) + g’(s, Cl) —2r— 2Vf(3/)|
<lg(s,a) = ¢'(s,a)|2Vinqq-

Therefore,
log(2/6
LD, (9.) = Ly (9. D) < 4Vinaa REM(G) + Vi %
By Hoeffding’s inequality, we also know, with probability at least 1 — §/2,
log(2/6
Ly (f f) = Ly (F, DI < Vi %

By the union bound over all h € [H], we have, with probability at least 1 — 4,

Lo(g. f) = Lu(g,)] < 4Vinaa RE(G) + V2, wm € G.and
L0(f, £) = Ll P < Vi Eo0)

17

Recall that we define § as the empirical minimizer, that is, § = arg mingeg Lp(g, f), and let g’ be

the population minimizer, that is, ' = arg mingeg L, (g, f). It follows that with probability at least
1—-9,

< |LD(f7 Lu(:)|+\LD(§ f) L.(Tf
= Lp(f,) = Lu(f; DI+ Lp(@, f) = Lo(g", /) |+ 1Lo(g", £) = Lu(g"s I+ 1Lu(g"s £) = Lu(T £, f)]
<0
:|LD(faf)_Lu(f>f)|+‘LD(Qva)_Lu(gva)|+|Lu(9T>f)_Lu(Tfaf”
=llgt=Trl3,,
< €apr T 4Vimaz R, (G) + Vr?uu w-

Note that L,,(f, f) — L,.(T f, f) = £(f). Now apply the union bound for all f in the candidate set
by setting

2log(2|II|H/S)

|LD(f7 f) - LD(§7 f) - E(f)| < €apz T 4Vma:cRﬁ(g) + ‘/T?Lam n

Let k = argmin; Lp(fi, fi) — Lp(di, f:), the following holds with probability at least 1 — 4,
2log(2|II|H /6
E() < _min E(f) + coape + coVinaeREG) + oV s 2log(2[I1]H/9)
i=1,..., n
for some constant ¢y > 0.
Assume F has finite elements, and &,,, = 0, then we need a sample size of n =

O(H"log (|F|[II|H/d)/e,)- H

A.6 Sample complexity of OPS using FQE

Consider a function class F = F; X --- X Fg_1 such that F is closed under 7™ for all = € II and
| 71| is finite for all h. Assume 7,4, = 1 for simplicity. Given a policy 7 € II, we can show that

g — qollag = > _ m(also)|gg (s0,a) — qo(s0,a)]

a

=Y w(also)[(T™a7)(s0,a) = (T"a1)(s0,@) + (T"a1)(50, @) = qo(50,)|

a

< Y mlalso)p(s'|s, a)m(a’|s)aT (s, @) — au(s,@)| + D w(also)l (T a1)(s0, @) = qo(s0,a)|

a,s’,a’

= a7 —ailliar + 1T @

Apply the same inequality recursively, we have

H-1
g5 — qolliag < Y 1T ans1 = anllvap
h=0
| H
<H T 1T qn+1 — qhH%,d;;
h=0

H—1
1
<H\Cx > T qner — anll3,, -
h=0

The second inequality follows from the Cauchy-Schwarz inequality, and the last inequality follows
from data coverage assumption.

18

Method Assumptions Sample Complexity

IS mp(als) > 0if w(als) > 0 for some 7 € 11 O(A® H In (|T1]/8) /%) (Corollary 2)

FQE (1) Data coverage for 11 Complexity of F
(2) F is closed under 7™ for all w € II
DICE (1) Data coverage for I1 Complexity of F
(2) F realizes d™ /i for all w € TT [Nachum et al., 2019, Uehara et al., 2020]
TDE (1) Data coverage for ITU {7*} O(H*log (|TI1|H/6)/2,,)
(2) Small €4yp (see Section 5.2)
(3) Deterministic environments
IBE (1) Data coverage for IT U {7*} O(H*log (|F|||H/S)/e2,,)
(2) Small €4, (see Section 5.2)
(3) G realizes (Tq) or (Tq—q) forq € Q
BVFT (1) Stronger data coverage for the underlying MDP Number of partitions

(2) ¢* € Q approximately (which implies small £5,5) (see Zhang and Jiang [2021])

Table 2: A summary of OPS methods. The first three methods are OPE methods and the last three
methods uses action value functions. The assumptions for function approximation can be relaxed to
hold approximately.

Theorem 5.3 and Proposition 6.1 and of Duan et al. [2021] imply that for some constant cy, with
probability at least 1 — 6,

J(m) — Z (als0)qo(s0, a)

acA

< coH ,|CH (Z Hlog |73 +H210g(H/6)>

n n
h

< cOH\/CH2IOg(|]:|H/6).

n

Apply the union bound, we know the following holds for all = € II with probability at least 1 —

< cottforr I,

n

J(m) — Z (also)qo(s0, a)

acA

To get an accuracy of £/2, we need n > ¢; HAC log (|.F||I1|H /) /e for some constant c;.

B Additional experiments

Top-k regret for Atari experiments.
and 4.

We provide the top-k regret for Atari experiments in Table 3

Table 3: Normalized top-2 regret. The numbers are averaged over 5 replay datasets.
Method

Breakout-early Breakout-medium Seaquest-early Seaquest-final

FQE 0.2863 £0.1016 0.2174 +0.2462 0.7612 £ 0.2465 0.2496 £ 0.3431
BE 0.3598 £0.1364 0.5564 £0.2016 0.6064 £ 0.2323 0.1879 £ 0.2047
BVFT 0.3197£0.1443 0.5564 £0.2016 0.6064 £ 0.2323 0.1693 £ 0.1558
random 0.2559 £+ 0.0617 0.3162 £ 0.0505 0.5079 £ 0.0644 0.3835 £ 0.0803

Table 4: Normalized top-3 regret. The numbers are averaged over 5 replay datasets.

Method Breakout-early Breakout-medium Seaquest-early Seaquest-final

FQE 0.2755 £ 0.1055 0.0584 £0.0785 0.6999 £ 0.2793 0.2309 £ 0.3224
BE 0.3219 £0.1433 0.4763 £0.1424 0.5351 £ 0.2106 0.0554 £ 0.0955
BVFT 0.2479+0.2081 0.4763 £0.1424 0.5351 +£0.2106 0.1193 £ 0.1406
random 0.2023 £0.0596 0.2323 £0.0258 0.4183 +£0.0612 0.3025 £ 0.0733

19

Model selection for BE selection. In the classic RL experiments, for BE, we use a two layer neural
network model as the function approximation, and perform model selection to find the hidden size
from the set {32, 64,128, 256}. In Figure 4, we show that the model selection procedure is important
for BE selection. BE-fixed is the baseline where we fix the hidden size to 256. We can see that BE is
better than or equal to BE-fixed and their performance convergence as sample size gets larger.

Acrobot Stochastic Acrobot
Well-covered Diverse Train Well-covered Diverse Train
0.8 / 0.4 0.4 -
506 7 0.6/ 0.8 — BE 503 0.4 /o 03 \ — BE
Bod |\ e osls e fo o oaf N s
0.2 i o2 . 04 0.1 B | 0147 \
101 10 10 10! 102 10® 10! 10 103 10T 107 10° 10T 10 10 100 102 10°
n n n n n n

Figure 4: Top-1 regret with varying sample size. The results are averaged over 10 runs with one
standard error.

C Experimental details

In this section, we provide the experimental details for classic RL environments and Atari environ-
ments.

C.1 Classic RL experiments

FQE Implementation. Since it is unclear how to perform model selection for FQE, we fix the
function approximation as a two layer neural network model with hidden size 256. We still need to
choose the learning rate, so we use a simple validation approach. We use the Adam optimizer with
learning rate selected from the set {0.001,0.0003, 0.0001,0.00003} and fix the training epochs to
200. We selected the hyperparameter configuration that resulted in a value function with the smallest
RMSTD error evaluated on a separate validation dataset after 200 epochs.

Note that this validation approach for FQE has a big issue. Unlike the validation approach for BE
selection, a smaller validation error for FQE does not mean that the FQE estimate is more accurate.

It is known that FQE can diverge, due to the fact that it combines off-policy learning with bootstrap-
ping and function approximation, known as the deadly triad [Sutton and Barto, 2018]. If one of
the candidate policies is not well-covered, then the FQE estimate may overestimate the value of the
uncovered policy (or even diverge to a very large value) and resulting in poor OPS. To circumvent
the issue of uncovered policies, we need assign low value estimates for uncovered policies. In our
FQE implementation, we assign low value estimates to policies for which FQE diverges so the OPS
algorithm would not choose these policies.

We provide a pseudocode for OPS using FQE in Algorithm 2. In our experiment, we set U =
Vinaz + 100 (we assume we know V,,,42).

Algorithm 2 OPS using FQE

Input: Candidate set II, training data D, function class F, threshold U
for 7 € Il do

Initialize g1 =0

forh=H-2,...,0,q, < argminscr Zh(f, qh+1) Where

W) = 5 2 (80) =7 = g (o' 7(s)

(s,a,r,s’)EDy,

Estimate the policy value .J (1) Eqr(]s0)[q0(50, @)]
if J(7) > U then
J(m) + —o0
Output: 71 arg max,cr J(n)

20

Stochastic environments. We implement stochastic environments by sticky actions. That is, when
the agent selects an action to the environment, the action might be repeated up to 4 times, with
probability 25% repeating the action again.

Generating candidate policies. To generate a set of candidate policies, we run CQL with different
hyperparameter configurations on a batch of data with 300 episodes collected with an e-greedy policy
with respect to the optimal policy where € = 0.4. The hyperparameter configuration includes:

¢ Learning rate € {0.001,0.0003,0.0001}

* Network hidden layer size € {128, 256,512}

* Regularization coefficient € {1.0,0.1,0.01,0.001,0.0}
* Iterations of CQL € {100,200}

As a result, we have 90 candidate policies. For deterministic Cartpole, CQL with many hyperpa-
rameter configurations can generate an optimal policy (reaching a return of 200) so the selection is
sufficiently easy that OPS algorithms using both FQE and BE achieve zero regret. In order to make
the result more informative, we remove all the policies that are optimal from the candidate set. That
results in 67 candidate policies for Cartpole.

Generating data for OPS. To generate data for offline policy selection, we use three different
data distributions: (a) a data distribution collected by running the mixture of all candidate policies.
As aresult, the data distribution covers all candidate policies well; (b) a data distribution collected
by running the mixture of all candidate policies and an e-greedy optimal policy that provides more
diverse trajectories than (a); and (d) a data distribution which is the same distribution used to generate
training data for CQL.

Randomness across multiple runs. To perform experiments with multiple runs, we fix the offline
data and the candidate policies and only resample the offline data for OPS. This better reflects the
theoretical result that the randomness is from resampling the data for an OPS algorithm. In our
experiments, we use 10 runs and report the average regret with one standard error. Since the variability
across runs is not large, we find using 10 runs is enough.

Random selection baseline. We include a random selection baseline that randomly chooses k
policies given k. Since the random selection algorithm has very high variance, we compute the
expected regret of random selection by performing 10000 random selection, and report the average
regret.

BVFT. We modify the BVFT implementation from the author of Zhang and Jiang [2021] (https://
github.com/jasonzhang929/BVFT_empirical_experiments/). BVFT has a hyperparameter
to tune, that is, the discretization resolution. We follow the method described in the original paper to
search for the best resolution from a set of predefined values. Note that in the author’s implementation,
they use different sets for different environments.

C.2 Atari experiments
For the Atari experiments, we use the CQL and FQE implemntation from the d3rlpy package

(https://github.com/takuseno/d3rlpy/) and the DQN replay dataset (https://research.
google/resources/datasets/dqn-replay/).

Generating candidate policies. To generate a set of candidate policies, we run CQL with the
hyperparameters used in the original paper:

* Regularization coefficient € {0.5,4.0,5.0}
* Number of gradient steps € {50000, 100000, 150000, . .., 500000}

As aresult, we have 30 candidate policies.

21

https://github.com/jasonzhang929/BVFT_empirical_experiments/
https://github.com/jasonzhang929/BVFT_empirical_experiments/
https://github.com/takuseno/d3rlpy/
https://research.google/resources/datasets/dqn-replay/
https://research.google/resources/datasets/dqn-replay/

Randomness across multiple runs. To perform experiments with multiple runs, we use different
runs in DQN replay dataset. We split the the data for each run into a training set to generate the
candidate policies and a validation set to perform OPS. That is, the candidate set and the offline data
for OPS are random. This reflects the practical experimental situation where the randomness is from
different dataset. In our experiments, we use 5 runs and report the average regret with one standard
error. The variability across runs is large, but the DQN replay dataset only provides 5 runs of data.

D Paper Checklist

Broader Impacts. Our work is foundational research and not tied to particular applications. There-
fore, we do not see a direct negative societal impacts.

Limitations. In this work, we investigate some conditions to enable sample efficient OPS, with a
focus on data coverage condition. We do not discuss other conditions to make OPS efficient, such
as the structure of the candidate policy set. For example, if we know that performance is smooth in
a hyperparameter for an algorithm, such as a regularization parameter, then it might be feasible to
exploit curve fitting to get better estimates of performance.

For the experiments, due to computational constraints, we provided results only on two standard
datasets and two Atari datasets. We do not expect the results to be too different for more datasets.

Compute. For Atari experiments, we used NVIDIA Tesla V100 GPUs. Each run for generating
candidate policies, running FQE, running BE selection took less than 3 hours. For classic RL
experiments, we used CPUs only. Each run for generating candidate policies, running FQE, running
BE selection also took less than 3 hours.

22

	Introduction
	Background
	Sample complexity of OPS
	OPE as subroutine for OPS
	OPS is not easier than OPE

	Minimax sample complexity for finite horizon finite MDPs
	Bellman error selection for OPS
	When is BE selection useful for OPS?
	A sample-efficient and hyperparameter-free BE selection method

	Should we use BE selection or OPE?
	Experimental results
	The hardness of OPS for benchmark datasets
	Empirical comparison of OPE and BE selection

	Related work
	Conclusion
	Technical details
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Theorem 3
	Sample complexity of OPS using FQE

	Additional experiments
	Experimental details
	Classic RL experiments
	Atari experiments

	Paper Checklist

